Perspectives on emerging battery technologies towards a sustainable energy transition

Chisu Kim

Hydro-Québec's Center of Excellence in Transportation Electrification and Energy Storage

Kim.chisu@hydroquebec.com

Global timeline to reach net-zero emissions

Source: IPCC Special Report on Global Warming of 1.5°C

Public

C	1.5°C	2°C IMPACT of 2°C compared to 1.5°C
LOSS OF PLANT SPECIES	8% of plants will lose 1/2 their habitable area	16% of plants will lose 1/2 their habitable area
LOSS OF INSECT SPECIES	6% of insects will lose 1/2 their habitable area	18% of insects will lose 1/2 their habitable area
FURTHER DECLINE IN CORAL REEFS	70% "90%	99% > 29% worse
EXTREME HEAT	14% of the global population exposed to severe heat every 1 in 5 years	37% or the global population exposed to severe heat every 1 in 5 years 2.6 x worse
SEA-ICE-FREE SUMMERS IN THE ARCTIC	At least once every 100 years	At least once every 10 years worse

Sources of GHG Emissions

"Energy Transition"

- 74.4% of CHG originate from the fossil fuels
- Clean electrification will be the primary route to decarbonization

Figure 2. Historical US GHG emissions by gas and source

Source: EPA (2022).

Renewable Energy: The Pathway to Net-Zero

FIGURE 1.1 Power generation needs to more than triple by 2050 in the 1.5°C Scenario

Note: PWh = petawatt hours.

Source: IRENA report 2023

 Need a tripling of global installed renewable power capacity by 2030 and then a further doubling by 2040.

Energy Storage Systems for Renewable Power

LIBs play a key role in the short- to mid-duration ESS market for applications requiring less than 8 hours of storage.

Emerging Technologies – New Materials

Cathode Active Materials

- LCO
- LNO
- LMO
- NCM
- LFP. LMP
- LMX
- LMR
- DRX

Anode Active Materials

- Graphite
- Si, Si-C, SiO_X
- LTO, LNTO
- <u>Li metal</u>

EV Market Segment vs. CAM

Different active materials with balanced cost and performance characteristics can be selected based on the specific requirements of various market segments.

Take Aways

• Electrochemical energy storage systems, particularly secondary batteries, play a vital role in the energy transition toward net-zero emissions

 Enhancing upstream sustainability of LIB production is essential to ensure both supply chain resilience and a reduced carbon footprint.

 A diversity of battery chemistries should be pursued to meet the specific needs of various applications and market segments, including the development of 'Co/Ni-free' and 'Beyond Li' active materials.

