

L'Accélérateur de transition

Hydrogen and the Transition to Net-Zero Energy Systems

THE CANADIAN ACADEMY OF ENGINEERING L'Académie canadienne du génie

Presentation to the Fellows Nov. 23, 2021

David B. Layzell, PhD, FRSC.

COLLAB-

Energy Systems Architect, The Transition Accelerator Professor & Director, Canadian Energy Systems Analysis Research (CESAR) Initiative, U. Calgary, E: dlayzell@ucalgary.ca; W: www.transitionaccelerator.ca

- ORATORS Adnan Khan, Energy Systems Analyst Hamid Rahmanifard, Energy Systems Analyst
 - Song Sit, Senior Assoc., CESAR

Mark Lea-Wilson, ERH2 H₂ Lead (Supply, Heat & Power) Jacob Lamb, ERH2 H₂ Lead (Transport) Chris Bayley, W Canada H2 lead

NET-ZERO EMISSIONS BY 2050 ...COMMITTED TO BY CANADA, USA AND DOZENS OF OTHER COUNTRIES

L'Accélérateur de transition

How can Canada 'win'?
What are the best transition pathways?

Existing Energy System

Net-Zero Energy System

NET-ZERO EMISSIONS BY 2050 ...COMMITTED TO BY CANADA, USA AND DOZENS OF OTHER COUNTRIES

The Transition Accelerator

L'Accélérateur de transition

How can Canada 'win'?
What are the best transition pathways?

Why Hydrogen (H₂)?

- 1. Some sectors need chemical, not electrical energy carriers
- 2. Complements low carbon electricity generation
- 3. Enhances biofuel production

- HD transport
- Heavy Industry
- Space Heating (esp. cold regions, large buildings)

Net-Zero Energy System

Towards a New Hydrogen (H₂) Economy

What are the Value Chains in a New Hydrogen Economy?

Canada:

Among the World's Lowest cost producers

of 'Blue' & 'Green' H₂

From fossil fuels (NG) coupled to carbon capture and storage (CCS) From water electrolysis using very low C electricity (wind, PV, hydro, nuclear)

Adapted from Asia Pacific Energy Research Centre. 2018. Perspectives on H₂ in the APEC Region. (Figure 3.4) <u>https://aperc.ieej.or.jp/file/2018/9/12/Perspectives+on+Hydrogen</u> +in+the+APEC+Region.pdf

Canada has low-cost Blue & Green H₂... But what about the environmental footprint?

What Markets for Hydrogen are Most Promising?...

Retail Cost Components for H₂ as a Transportation Fuel

Retail Cost Estimates for H₂ Fueling Station within 5 km of Supply

NOTE:

- . Fueling station size has a major impact on the retail cost of delivered $H_{2:}$
 - To be economically sustainable, 2+ t H₂/d is needed.
 - =~80+ buses/stn. OR ~40 class 8 trucks/stn
- While H₂ production cost is important, the other costs in the value chain are of equal or greater importance:
 - Preparation and Delivery
 - ➤ Fuel station

...AND the distribution technologies also impact the fueling station cost

How to Build a New Hydrogen Economy

The H₂ Problem...

Its a gas, therefore more difficult to move and store than liquids, especially in small quantities.

MUST BRING TOGETHER:

- ✓ Low-cost <u>waste</u>, <u>blue</u> or <u>green</u> H_2 ;
- ✓ Substantial nearby markets for the H₂ (esp. transport and heating fuel markets)
- \checkmark Ability to connect the two
- ✓ Scale of supply/demand where the economics works without sustained public investment;
- ✓ Engaged industry, governments and academics

We must create new, self-sustaining VALUE CHAINS connecting demand to supply...

Towards a New H₂ Value Chain in Alberta

- Piggy-back' on low
 Pipe cost industrial blue
 H₂ production.
- 2. Pipeline H₂ to new fuel markets
- Rapidly grow
 H₂ demand
- 4. Attract H₂-using industries & OEMs

- ✓ Oil upgrading/refining
- ✓ Chem & material production

New Blue H₂ initiatives

May 2021: Suncor/ATCO for ~2027 June 2021: Air Products for ~2024 July 2021: Scotford CO₂ infrastructure Aug 2021: Petronas-Itochu H₂/NH₃ export Sept 2021: Mitsubishi-Shell Canada H₂/NH₃ Nov. 2021: Northern Petrochem. Corp. H₂/NH₃

Edmonton's Markets for Fuel Hydrogen ...on two corridors

Transportation: ~670 t H₂/d Building Heating: ~1500 t H₂/day + Export

Power & Control in the New H₂ Value Chain

Projects being Deployed

H₂-DIESEL DUAL FUEL TECHNOLOGY

- □ Multiple projects to develop and deploy HD2F on
- □ Important 'bridge' technology to creating fueling

AMT/

Alberta Motor Transport Association

HYDROGEN TRUCK ROADSHOW

Hydra Dual fuel Truck (Avail: now)

Hyzon FCE Truck (Avail: Q3, 2022)

Nikola FCE Truck (Avail: Q4, 2022)

To provide carriers & municipalities 'hands-on' experience with: H₂-diesel dual fuel: H₂ Fuel cell electric

HYDROGEN FUELING STATIONS

 To support AZETEC, AZEHT and HD2F pilots and Demonstration Projects

ETA: 2022

METHANE PYROLYSIS PROJECTS

- Various proponents & funders
- □ Various Funding Agencies
- Would allow 'blue' H₂ to be created anywhere there is natural gas,
 No CCS needed!
 - □ No CCS needed!

FORT SASKATCHEWAN HYDROGEN BLENDING PROJECT

5% H₂ blending into a portion of the natural gas distribution system in Fort Saskatchewan, AB

Magnitude of the Opportunity

Magnitude of the Opportunity / Challenge

- A. Alberta Transportation Fuel Market
- B. Provincial Natural Gas Demand
- C. Export by pipeline
- D. Export by ship

Assumes

- 2018 demand
- Any increases in demand with population/GDP growth offset by efficiency / conservation

Reference A. Alberta Transportation Fuel Market

ALBERTA (2017)

IMPLICATIONS... Blue H₂ production 4277 t H₂/d 79% incr. in AB H₂ production ~11 new 400 t H_2/d SMR or ATR CCS: 13 Mt CO₂/yr WTW GHG red'n: 25 Mt CO₂/yr **Fueling Stations** \Box 428 stations @ 10t H₂/d/station

Many pipeline connected

B. NG Decarbonization for Use in Alberta

IMPLICATIONS

D. Moving H₂ to Asia

The Transition Accelerator

L'Accélérateur de transition

Conclusions

- Many nations of the world, including Canada, are committed to transitioning to net-zero emission energy systems;
- Canada is poised to lead this transition given its ability to produce, use & export low-carbon (Blue & Green) hydrogen;
- The focus needs to be on H_2 Hubs and corridors;
- □ We need to start now!

THE CANADIAN ACADEMY OF ENGINEERING L'Académie canadienne du génie

Presentation to the Fellows Nov. 23, 2021

David B. Layzell, PhD, FRSC.

COLLAB-

Energy Systems Architect, The Transition Accelerator Professor & Director, Canadian Energy Systems Analysis Research (CESAR) Initiative, U. Calgary, E: dlayzell@ucalgary.ca; W: www.transitionaccelerator.ca

- DRATORS Adnan Khan, Energy Systems Analyst Hamid Rahmanifard, Energy Systems Analyst
 - Song Sit, Senior Assoc., CESAR

Mark Lea-Wilson, ERH2 H, Lead (Supply, Heat & Power) Jacob Lamb, ERH2 H₂ Lead (Transport) Chris Bayley, W Canada H2 lead