CANADIAN ACADEMY OF ENGINEERING OCEANS SEMINAR

Marine pollution and oil spill response:

Memorial's physical location inspires its researchers to lead critical marine and ocean-related research.

Dr. Neil Bose, Vice-President (Research) Memorial University Newfoundland and Labrador's University March 2021

Slide credits include: Jimin Hwang; Jeff Green

NEWFOUNDLAND AND LABRADOR'S UNIVERSITY

200

MLL IS

Line Plan

READED

AN

14

A CHORN

Ashal

MAL I

A State

A Una

EN L

2

and and

Background

Most ocean pollution begins on land

-National Oceanic and Atmospheric Administration (NOAA)-

ource: https://oceanse@ice.noaa.gov/facts/polletion.html

HILL

Background

Marine life is facing constant threats and dangers: Plastics

-Australian Marine Conservation Society-

Background

Oil spills BP

Gulf of Mexico April 2010

Spilled amount: 4.9 million barrels

When oil spills happen ...

RESPONDING TO OIL SPILLS AT SEA

• 10 .

- Ing

DISPERSION

Chemical dispersion is achieved by applying chemicals designed to remove oil from the water surface by breaking the oil into small droplets.

BURNING

Also referred to as in situ burning, this is the method of setting fire to freshly spilled oil, usually while still floating on the water surface.

- BOOMS

rce: National Oceanic and Atmospheric Administration

Booms are long, floating barriers used to contain or prevent the spread of spilled oil.

SKIMMING

Skimming is achieved with boats equipped with a floating skimmer designed to remove thin layers of oil from the surface, often with the help of booms.

Oil Spill Response Guideline

CRITICAL RESEARCH

Projects at Memorial University, funded under Fisheries and Oceans Canada's Multi-Partner Research Initiative (MPRI) on oil spill response:

Technical effectiveness of using dispersants

- Improved adsorption technologies
- Interactions between oil, dispersants and particles
- Improved decanting and oily waste management
- Delineation using Autonomous Underwater Vehicles

MPRI - \$45.5 million in federal funding to focus on enhancing oil spill response measures (\$5.5 million at Memorial) – part of Oceans Protection Plan

WORLD-CLASS RESEARCH FACILITIES

Autonomous Ocean Systems Centre (AOSCENT) CREAIT Network

0011

TEAM

- Researchers from Canada, Australia, UK, United States, China
- *Memorial:* Neil Bose, Ting Zou, Bo Thanyamanta, Yaomei Wang, Xi Chen, Gina Millar, Craig Bulger, Work Term students
- Dalhousie: Douglas Wallace, Aly Chua, Mae Seto, Haibo Niu
- CSIRO Energy: Xiubin Qi
- Univ of Tasmania: Jimin Hwang, Eonjoo Kim
- Univ of Southampton: Mario Brito
- Sun Yat-sen Univ, Zhuhai: Shuangshuang Fan

Advisors:

- Lisa DiPinto, NOAA Office of Response and Restoration
- Robyn Conmy, Oil Research Program, USEPA
- Chris Kaminski/David Hopkin, International Submarine Engineering (ISE)
- Anthony Peach/Mike Cole, Fugro, St John's
- Erin Fischell, WHOI

Four main tasks to respond to oil spills

- Step 1: Assessment
- Step 2: Monitoring
- Step 3: Response assistance
- Step 4: Reporting

- 1. Discontinuous plume
- 2. Dispersion
- 3. Physical, chemical and biological transformation

... extracts from "Understanding oil spills and oil spill response" - by United States Environmental Protection Agency (EPA) -

Example

DWH Explosion

Gulf of Mexico April 2010

Emulsification Trapped at 1000 m depth

Reference: King, G. M., Kostka, J. E., Hazen, T. C., & Sobecky, P. A. (2015). Microbial responses to the Deepwater Horizon oil spill: from coastal wetlands to the deep sea. Annual review of marine science, 7, 377-401.

Autonomous underwater vehicle (AUV)

- Expanded application of underwater robotics
- Increased demand for high level of autonomy

THREE MAIN SUB-PROJECTS

- 1. Adaptive sampling of maritime environment features and sensor capability using an Autonomous Underwater Vehicle (AUV) ISE Explorer.
- 2. Multi-vehicle cooperation in defining the boundary and diffusion of an oil spill glider AUVs.
- 3. Assessment of different AUV platforms and specification of a rapidlydeployable AUV for oil spill delineation – micro AUVs and Long Range AUVs.

Methodology

Backseat Driver

Frontseat Driver

- Independent decisions
- Generate commands
- Indirect driver
- Real-time requirement

- Pre-defined instruction
- Vehicle motion control
- Direct driver
- Vulnerable to chained system failure

Methodology

- Target of interest undissolvable substances
- In-advance detection

SIMULATION RESULTS (OVERALL)

2-Phase delineation

- ✓ Searching
 - ✓ Mode 1: Waypoint-visiting
 - ✓ Mode 2: Expanded search

✓ Tracking

- Mode 3: Tracking
- ✓ Mode 4: Sampling

SIMULATION RESULTS (TRACKING)

Field experiments

Marine base, Holyrood Bay, NL

Experimental result

Mission: *beta*

- Depth = 0m (on surface)
- Overshooting occurred
- Conditional behaviour selection performance

Future work

- Field test
- Sensor: scanning sonar
- Various targets identification
 - Micro air bubbles
 - Streamers of sailcloth
 - Nets or ropes

THANK YOU

Slide credits include: Jimin Hwang; Jeff Green